Effective rainfall in irrigated agriculture

Table of Contents

Foreword

Chapter I. Introduction

1. Effective rainfall and its significance
2. The pathway of rain water
3. Concepts of effective rainfall
4. Definition of effective rainfall
5. Effectiveness of rainfall
6. Factors influencing effective rainfall

Chapter II. Measurement of effective rainfall

1. Components of effective rainfall and their measurement
 1.1 Rainfall and Irrigation
 1.2 Surface Run-off
 1.3 Rooting Depth
 1.4 Deep Percolation Losses
 1.5 Evapotranspiration

2. Empirical methods of determining effective rainfall
2.1 Soil Moisture Changes
2.2 Daily Soil Moisture Balance Method
2.3 Integrating Gauge
2.4 The Ramdas Method
2.5 Lysimeters
2.6 Drum Technique for Rice

3. Determining effective rainfall from formulae

3.1 Renfro Equation
3.2 U.S. Bureau of Reclamation Method
3.3 Potential Evapotranspiration/Precipitation Ratio Method (India)
3.4 USDA, SCS Method
3.5 Empirical Relationships

3.5.1 Crops other than rice
3.5.2 Rice Measurement in rice

4. Evaluation of methods

Chapter III. Application of effective rainfall data is irrigation and drainage projects

1. Irrigation project design
2. Irrigation project operation
3. Drainage projects

3.1 Drainage of Excess Water
3.2 Drainage for Leaching of Salts

4. Rice cultivation
5. The effect of groundwater
6. Effective rainfall in unirrigated and low rainfall, areas

Chapter IV. Increasing the proportion of effective rainfall its effectiveness and further lines of work

1. Increasing effective rainfall
 1.1 Reducing Surface Run-off
 1.2 Increasing Infiltration (except in rice culture)
 1.3 Building Water Storage Structures
 1.4 Minimizing Peep Percolation Losses

2. Increasing the effectiveness of rainfall
3. Further lines of work needed in the field of effective rainfall in agriculture

3.1 Collecting Data by Setting Up Crop Lysimeters
3.2 Verification of Empirical Methods
3.3 Development of Empirical Methods in Different Areas
3.4 Utilizing Information of Effective Rainfall in Agricultural Practices
3.5 Increasing Effective Rainfall Under Field Conditions
3.6 Increasing the Effectiveness of Rainfall

Bibliography

Irrigation in Ethiopian agriculture. This report argues that water resource management in agriculture is a critical contributor to the economic and social development of Ethiopia. If successful, irrigation in Ethiopia could represent a cornerstone of the agricultural development of the country, contributing up to ETB 140 billion to the economy and potentially moving up to 6 million households into food security. Rainfall is available in multiple forms that can be used for agriculture and irrigation. These forms include surface water (perennial and seasonal rivers), renewable groundwater, wetlands, soil moisture, and rainwater (captured or lost through evapotranspiration). FAO. (1978). Effective rainfall in irrigated agriculture. FAO Irrigation and Drainage Paper 25. Faulkner, J. W., Steenhuis, T., de Giesen, N. V., Andreini, M. and Liebe, J. R. (2008). Water use and productivity of two small reservoir irrigation schemes in Ghana's upper east region. Irrigation and Drainage. 57: 151â€“163. Indicators for comparing performance of irrigated agricultural systems. Research Report 20. Colombo, Sri Lanka: International Water Management Institute. Effective rainfall can vary substantially for different land cover and land use types, and the interception of rain-fall by vegetation/canopy can be a considerable fraction of precipitation, as much as 15-40 percent in forest canopies. In agricultural fields, maize, soybean, and similar crop canopies can intercept 0.08 inch to 0.16 inch of precipitation, sprinkler irrigation water for precipitation, or irrigation events greater than 0.5-0.6 inch. In most cases, the infiltration rate is much higher at the beginning of an irrigation and/or rainfall event and decreases gradual-ly over time as the soil gets wetter. Infiltration is substantially influenced by soil physical properties as well as soil moisture gradient.